
International Journal of Theoretical Physics, Vol. 35, No. 3, 1996 

Weak Decoherence and Quantum Trajectory 
Graphs 

Eric Chisolm, 1 E. C. G. Sudarshan, l and Thomas F. 
Jordan 2 

Received August 11, 1995 

Griffiths' "quantum trajectories" formalism is extended to describe weak 
decoberence. The decoherence conditions are shown to severely limit the 
complexity of histories composed of fine-grained events. 

In response to the increasingly popular opinion that the Copenhagen 
interpretation of quantum mechanics raises more questions than it answers 
(Omnbs, 1992) and a desire to treat the entire universe quantum mechanically, 
Gell-Mann and Hartle (1990, 1993; Hartle, 1993) have worked to create an 
alternative interpretation of quantum theory, expanding upon earlier work by 
Griffiths (1984) and Omn~s (1988). Their scheme emphasizes not individual 
events, but Griffiths' notion of a history, a sequence of events at a succession 
of times, and they assert that the histories to which one assigns probabilities 
are distinguished not by measurements made by an external classical 
"observer," but by the extent to which they satisfy certain "consistency" or 
"decoherence" conditions guaranteeing compliance with the classical rules 
of probability. 

Basic questions about this formalism remain largely unanswered: How 
restrictive are the decoherence conditions? What kinds of histories decohere? 
Do they occur in sufficient variety to describe the physical world? 

These questions have led us to investigate several aspects of decoherence. 
We have extended Griffiths' "quantum trajectories" formalism (Griffiths, 
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1993) to describe weakly decohering sets of histories. We have found severe 
limits on the structure of fine-grained decohering histories. 

Following Gell-Mann and Hartle, we let an event be described by a 
projection operator Pa. If Pa is one dimensional, we say the event is fine 
grained; otherwise the event is coarse grained. A complete set of events 
{P,~} forms a resolution of the identity: 

~] Pa = I and PaP~ = 8aaP~ (1) 
a 

Let {Pak(t,)} be the complete set of events (in the Heisenberg picture) at 
time tk. The probability that event Pa~(tt) will occur at time tt, Pa2(t2) at time 
t2 . . . . .  and Pa,,(t.) at time t. is (Hartle, 1993) 

P(~I, ~2 . . . . .  a . )  

= Tr(Pa.(t.) " '" Paz(t2)P~l(h)pPal(h)Pa2(tz) "'" Pa.(t.)) (2) 

for an initial state described by a density operator p. With this sequence of 
events we associate the history C~ defined by 

Ca = Pa,(tn) "'" Pa2(t2)Pal(tl) (3) 

in terms of which equation (2) becomes 

p(c0 = Tr(CapCa t) (4) 

With this expression in mind, we define the decoherencefunctional between 
histories Ca and C 0 for an initial state p by 

D(et, 13) = Tr(CapCI3*) (5) 

and we say {C~ } forms a weakly decohering set of histories iff 

Re D(et, 13) = 0 for all a 4:13 (6) 

This condition guarantees that the probabilities associated with the histories 
in {Ca} obey the classical rules of probability (Hartle, 1993). For such a set 
of histories, the decoherence condition (6) and the probability formula (4) 
may be combined in the equation 

Re D(ct, 13) = p(et)~al3 (7) 

A set of histories which satisfies the stronger condition 

D(ot, 13) = p(et)~al 3 (8) 

is said to exhibit medium decoherence. This condition is sufficient but not 
necessary to ensure compliance with the classical rules of probability. We 
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will consider both kinds of decoherence. Finally, we will speak of  individual 
histories C,, and C a decohering if they satisfy equation (7) or (8). 

From equations (4) and (5) and the cyclic property of the trace it follows 
that (i) histories with different final events always decohere and (ii) any 
history which occurs with zero probability decoheres with all other histories. 
Further, any decohering set of  histories can be extended by inserting between 
any two times a set of events identical (in the Heisenberg picture) to those 
at the earlier or later time; the set of  histories that results still decoheres. 
This corresponds to inserting a set of events in the SchrOdinger picture which 
matches the earlier or later set aside from unitary evolution to the new time. 
We call this a congruent extension, since the new events are congruent with 
the old ones. In light of this, we will look for sets of histories with more 
than one nonzero-probability history but without congruent extensions. 

We will use Griffiths' graphical representation (Griffiths, 1993) of "con- 
sistent histories," in which he represents the set of possible events at each 
time with an orthonormal basis of the system's state space. (In this formalism, 
every event is fine grained.) He represents the set of  histories produced by 
this choice of  events with a trajectory graph, in which each event at time tj 
corresponds to a node in the jth column of the graph and a line is drawn 
between nodes in adjacent columns iff the transition amplitude between the 
corresponding events is nonzero. Figure 1 presents two examples of  such 
graphs. Each path (unbroken line through two or more nodes) through a 
trajectory graph represents a nonzero-probability history with initial state 
given by the first node in the path. (Griffiths of course refers to our paths 
as "trajectories.") The set of histories described by the graph satisfies Griffiths' 
noninterference condition if any two nodes are connected by at most one 
path. We will show immediately below that the noninterference condition is 
equivalent to medium decoherence of  the set of histories with any node in 

0 0 0 0 
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tj ti+ t tj t j+ I 

(a) (b )  

Fig. I .  Griffiths trajectory graphs. (a) A candidam for a nontrivial transition in which the 
number of connected events does not increase. This graph is forbidden by the orthogonality 
of different events at tj. (b) Another candidate for the same transition. The orthogonality of 
different events at tj demands that at least two events at tj+~ be doubly connected. 
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(a) (b) 
Fig. 2. Trajectory graphs with a specified initial state. (a) A graph corresponding to a weakly 
decohering set of histories of a two-level system. (b) A graph corresponding to a set of histories 
exhibiting medium decoherence. 

the graph as the initial state. However,  we wish to follow in the spirit of  
Gell-Mann and Hattie, in which decoherence is a function of  the initial state 
as well as the histories themselves. Further, since medium decoherence is a 
more stringent requirement than is actually necessary, we would like to have 
a condition for weak decoherence in terms of these graphs. As we will also 
prove below, the required condition is that at most two distinct paths connect 
any two events, and if there are two paths, the phases of the corresponding 
amplitudes differ by -rr/2. Thus, we will use a modified form of Griffiths'  
quantum trajectory formalism in which (i) we specify the initial state (produc- 
ing what Griffiths would call an elementary family of trajectories) and (ii) 
we impose the requirement of  weak, not medium, decoherence. Figures 2 
and 3 provide examples of  such graphs. 

Both decoherence conditions mentioned above are special cases of  the 
following theorem. 

Theorem 1. Suppose {C,~} is a decohering set of  histories with initial 
state p and suppose that two possible events Ij)(jl  at time tj and I k)(kl at a 
later time tk are fine grained. I f  at least one history leading to event Ij)(j l  
occurs with nonzero probability, then of  all histories which lead from Ij)(jl  
to I k)(k I, at most two occur with nonzero probability. I f  two occur, then the 
phases of  the corresponding amplitudes differ by at/2. I f  the set {C,~} exhibits 

P tl t2 t3 t4 t5 t6 
Fig. 3. A set of decohedng histories in a five-dimensional space with exactly 5 + [5/2] 

- 2 = 5 noncongruent transitions. 
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m e d i u m  decoherence, at most one history leading from Ij)(j I to I k)(kl occurs 
with nonzero probability. 

Proof.  Any history leading from Ij)(jl to I k)(kl can be written as 

C~ = I k ) ( k l D ~  Ij)(jl  (9) 

and the decoherence condition (6) applied to any two histories which include 
C~ and C a where ct ~ 13 can be reduced to 

Re(klO,~ Ij)(klOf~ I j)* = 0 (10) 

If both amplitudes are nonvanishing, then 

arg((klD~ I j)) - arg((klD a I j)) = _+at/2 (11) 

Thus, any two numbers in the set { (klD~, I j)} are orthogonal in the complex 
plane. Since the complex plane is two dimens ional ,  at most two of the (klD~, I j )  
are nonzero. If there are two, they have the promised phase difference of  
-rr/2. Had we assumed that the histories exhibited m e d i u m  decoherence, we 
would have used the decoherence condition (8) and in (10) we would not 
have taken the real part; then at most one member of the set {(klD~ I j)} 
would be nonvanishing. �9 

If the initial state of the system is pure, then the theorem is still valid 
if we replace Ij)(jl with p. Thus, if the initial state is pure and the set {C~} 
exhibits weak (medium) decoherence, then at most two histories connect 
(one history connects) the initial state to any fine-grained event with non- 
zero probability. 

An immediate consequence of this theorem is interesting enough to be 
a theorem of its own. 

Theorem 2. If tj < tk < tt and a nonzero-probability history leads to a 
fine-grained event at tj which does not occur at tk but occurs again at tt, then 
no set of histories containing these events can decohere. 

Proof.  At least two nonzero-probability histories must connect the event 
at tj to its twin at tl. Further, the product of the amplitude for one history 
and the complex conjugate of that for the other is real (and positive), because 
the factors linking tj to tk are the complex conjugates of those linking tk to 
tt. Thus condition (10) of Theorem 1 cannot be satisfied. �9 

With Theorem 1 in hand we can immediately describe all possible 
decohering sets of histories of a two-level system (spin 1/2) with a pure 
initial state. All sets of histories with one event after the initial state exhibit 
(medium) decoherence automatically; thus we begin by considering two- 
event sets. We assume the system is initially polarized in the direction i, 
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polarized parallel or antiparallel to n at tl, and parallel or antiparalleI to f at 
t2. Writing the corresponding projection operators in the standard way using 
Pauli matrices, one discovers that the weak decoherence condition (6) 
becomes 

( i x  n ) ' ( n  x f ) = 0  (12) 

[This result is known (Omn~s, 1992).] Only these sets of two-event histories 
weakly decohere. Further, every decohering set of histories with three or 
more events is a congruent extension of a two-event set; if it were not, the 
number of nonzero-probability histories would be at least five, so at least 
three would lead from the initial state to one of the two final events, which 
Theorem 1 does not allow. 

If we were to impose medium decoherence instead, the allowed sets of  
histories would simplify considerably. Theorem 1 allows at most one nonzero- 
probability history to lead from the initial to each of the final states; thus 
the total number of nonzero-probability histories would be at most two. Any 
set of  histories which is not a congruent extension of a one-event set will 
have at least three nonzero-probability histories; thus it would not decohere. 
Therefore the only sets of fine-grained histories of  a two-level system which 
exhibit medium decoherence are one-event sets and their congruent exten- 
sions. In Griffiths' language, we have shown that weakly decohering sets of  
histories corresponding to the graph in Fig. 2a exist, but the only sets exhib- 
iting medium decoherence are represented by graphs like the one in Fig. 2b, 
a congruent extension of a one-event set. 

We call an event in a trajectory graph connected if its node leads back 
to the initial state through at least one path (if at least one history leading 
to the event from the initial state occurs with nonzero probability). We call 
it singly connected if exactly one path leads back to the initial state, doubly 
connected if two paths lead back to the initial state. In these terms, Theorem 
1 demands that every fine-grained event in a decohering set of  histories be 
at most doubly connected (or singly connected if the set exhibits medium 
decoherence). An event is unconnected iff it has no overlap with the connected 
events at the previous time; thus the unconnected events at any time lie in 
the span of the unconnected events at the previous time. Therefore the number 
of  connected events is a nondecreasing function of time. 

Theorem 3. In every transition between times in a decohering set of 
histories represented by a trajectory graph, either: 

1. the connected events before and after the transition are identical; 
2. the number of connected events increases by at least one; 
3. the number of doubly connected events increases by at least two; or 
4. both 2 and 3 occur. 
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Proof.  All we need to prove is that if 1 and 2 do not occur, then 3 must 
occur. Thus, suppose the connected events before and after the transition 
from time tj to time tj§ are not identical, yet the number of  connected events 
does not increase. Then at least one event at tj§ must be connected to two 
events at tj, as shown in Fig. la. However, that one event at tj§ cannot be 
the only  one linked to two events at tj; since the first event at tj is connected 
to only the first event at tj§ the two differ at most by a phase, and because 
the first and second events at tj are orthogonal, the first event at tj§ and the 
second event at tj must also be orthogonal. Thus at least two events at tj§ 
must be connected to two events (each) at tj, as shown in Fig. lb. None of 
the doubly connected events from tj can be involved in this part of the 
transition (since that would make one of the events at tj§ at least triply 
connected); therefore, the number of  doubly connected events increases by 
at least two. �9 

In a set of histories represented by a trajectory graph, the system's 
behavior is specified at only a finite number of  times. We might have hoped 
to better approximate continuous time evolution by inserting additional sets 
of events between those already in the graph. However, as the next theorem 
shows, the possibilities for this are very limited. 

Theorem 4. Suppose that between times tj and tj+ I in a decohering set 
of histories represented by a trajectory graph, exactly one step of change 
occurs: either the number of connected events increases by exact ly  one or 
the number of doubly connected events increases by exact ly  two (but not 
both). Then if an additional set of events is inserted between ty and tj§ while 
maintaining decoherence, it must be identical to either the set at tj or the set 
at  lj+ 1 . 

Proof.  Suppose that the new set is identical to neither the set before nor 
the set after. Then in the transition from tj to tj+j at least two steps of  change 
must occur (one for the transition from tj to the intermediate time, one for 
the transition from the intermediate time to tj+O. �9 

The histories are restricted even more drastically if only f in i te ly  many 
events occur with nonzero probability (so only that many events are 
connected). 

Theorem 5. Consider a trajectory graph representing a set of  decohering 
histories with a finite number n of connected events at a particular time. 
Excluding congruent extensions, the number of  transitions prior to that time 
is at most n + [n/2] - 2, where [. ] denotes the greatest integer part. 

Proof.  Suppose that the given set of decohering histories contains no 
congruent extensions. The number of  connected events at time t~ is therefore 
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at least two, so the number of  transitions that increase the number of  connected 
events is at most n - 2. The number of  transitions that increase the number 
of  doubly connected events is at most [n/2]. Thus the total number of  transi- 
tions is at most n + [n/2] - 2. �9 

This bound is the strongest possible, because for every n there is a set 
of  decohering histories in an n-dimensional space with this maximum number 
of  noncongruent steps (the n = 5 case is illustrated in Fig. 3). The conse- 
quences of  this theorem are avoided only if the number of  connected events 
is infinite right at the start, so that infinitely many events occur with nonzero 
probability at each time. 

Comparison with Fig. 2 shows that in each of the last two transitions 
in Fig. 3 the system can be decomposed into two subspaces, in one of  which 
the transition is to congruent events, while in the other the transition is that 
of  a two-level system. In fact, a large class of  transitions is of  this general 
type, as we show with our final theorem. 

Theorem 6. In every transition in which the number of  connected events 
is finite and does not increase, the matrix describing the transition between 
the connected events is block-diagonal (to within rearrangement of  the rows 
and columns), and each block is either 2 x 2 or 1 X 1. 

Proof  Let the transition from tj to tj+~ leave the number of  connected 
events n unchanged. Since the span of the connected events at tj lies in the 
span of the connected events at tj§ and both have dimension n, the two 
subspaces are the same; so they have the same orthogonal complement.  Thus 
each (un)connected event at tj§ overlaps only the (un)connected events at tj. 
Since each connected event at tj+l is at most doubly connected, each is linked 
to either one or two connected events at tj and no others; thus the matrix 
describing the entire transition has at most two nonzero entries in each column 
representing a connected event at tj§ If  a column has only one nonzero 
entry, then unitarity guarantees that the entry is also the only nonzero entry 
in its row; this yields all of  the 1 x 1 blocks. If  a column has two nonzero 
entries, then the orthogonality of  different rows and columns demands that 
the entries in the same two rows of one and only one other column are also 
nonzero. Those two columns together form a 2 x 2 block; all other entries 
in their rows and columns are zero. �9 

This theorem reduces the allowed transitions to an extremely simple 
form; its restrictions are avoided only if the number of  connected events (the 
number of  events that occur with nonzero probability) increases continually 
over time. 

These results suggest that the decoherence conditions strongly favor 
histories dominated overwhelmingly by congruent extensions. It is not surpris- 
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ing that decoherence selects out the histories that conform with the system's  
unitary evolution, but the extent to which they are preferred is remarkable. 
For  example,  only congruent  events can occur  between congruent  events 
(Theorem 2), and if continuous classical evolution is to be approached by 
inserting events at more and more times, a lmost  all insertions must  be congru-  
ent extensions (Theorems 2, 4, and 5). Probabilities that are periodic in time 
and are for a finite number  of  events at some time must be for congruent  
events and are therefore constant in time. (The number  o f  connected events 
can not decrease, so if it is periodic, it must  be constant and Theorem 
6 applies.) 
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